

CAS Outreach Workshop Lausanne, October 25, 2014

From Waste to Gold:

Cradle to Cradle Material Recycling of Waste of Electrical and Electronic Equipment

> Prof. Dr. ir. Joost Duflou Mechanical Engineering Department KU Leuven Joost.Duflou@mech.kuleuven.be

> > ${\rm \bigcirc} \, JRD$

Prevention of waste Reuse of products Reuse of components Material recycling 2. Incineration with energy conversion Incineration without energy conversion Landfill

Product manufacture

Distribution

Reverse

Logistics

EoL processes

A. Disassembly

Other processes

B. Shredding

Sorting

Cleaning

Inspection

Use

End-of-Life Treatment

WEEE distribution and collection rate in Europe

EEE flux(tonnes), year: 2008

End-of-Life Treatment

WEEE collection rate in Europe

The EU WEEE Directive currently sets a minimum collection target of 4 kg per annum per inhabitant. © JRD

5

End-of-Life Treatment

Belgian organisations and companies involved in the EoL treatment

Recupel organizes the collection, sorting, treatment and recycling of Waste Electrical and Electronic Equipment (WEEE) in Belgium.

van Gansewinkel Groep 🗲

Van Gansewinkel Groep is market leader in collecting and processing waste into raw materials and energy.

Umicore is a global precious metals recycling group.

End-of-Life Treatment

Example of an EEE recycling line

Turning electronic waste into cash (3:16)

End-of-Life Treatment

Example of EEE recycling: CRT processing line

End-of-Life Treatment

Example of a CRT recycling line

 \bigcirc JRD

End-of-Life Treatment

Material value of WEEE

Equipment type (origin of he printed circuit board)	Silver (g/t)	Gold (g/t)	Palladium (g/t)	Platinum (g/t)
omputer CRT Monitor	150	9	3	
omputer LCD Monitor	1300	490	99	
rinter	350	47	9	
elephone	2244	50	241	
obile telephone	5540	980	285	7
omputer CRT Monitor omputer LCD Monitor tinter elephone lobile telephone	150 1300 350 2244 5540	9 <u>490</u> 47 50 980	3 99 9 241 285	

In general, presently mined ores for the extraction of gold and palladium contain less than 10 g/t of precious metals (Hagelüken et al. 2005).

Concept of 'Urban Mining'.

P. Chancerel, *et al.*, "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," *Journal of Industrial Ecology*, vol. 13, pp. 791-810, 2009.

End-of-Life Treatment

Increasing market value of precious metals

Rapidly increasing gold and silver prices from 1988 -2010

Short and limited impact of economic crisis

End-of-Life Treatment

Scarcity of certain precious metals in Europe

'Defining Critical Raw Materials for the EU', Report from the Raw Material Supply Group ad hoc working group defining critical raw materials, July 30, 2010

End-of-Life Treatment

Shortcomings of European EoL treatment

Illustrative figures with gold as example:

14

Maximize recovery of materials from discarded LCD TVs

- Business Model
- Design Guidelines

Recycling Process Optimization

Economic & Environmental

Legislation: Recycling Targets

Plastic Separation: ?

Plastic Separation: ?

(2011). Waste Electrical and Electronic Equipment (WEEE). Available: <u>http://scp.eionet.europa.eu/themes/waste</u> M. Schlummer, "Recycling of styrene polymers from shredded screen housings containing brominated flame retardants," *Journal of applied polymer science,* vol. 102, p. 1262, 2006.

Back Covers Closed Loop Recycling

- Performed at Apparec
- Two batches:
 - 57 kg of PC/ABS FR 40 single blend
 - 150 kg of PC/ABS FR 40 mix blends
- Basic "cleaning" step
- Initial size reduction performed

Back Covers Closed Loop Recycling

Batch 1 : PC/ABS FR 40 (150 kg) mix blends

Batch 2 : PC/ABS FR 40 (57 kg) single blend

Contaminations: tapes, foils, stickers

INPUT

No metal contaminations Colors: white, grey, black

REGRINDING

Small lab regrind machine

Particles < 5 mm, possible to directly mould again

OUTPUT

Evaluation of Closed Loop Recycling ?

100% recycled material

Peeters J.R. et al., Closed Loop Recycling of Plastic Housing for Flat Screen TVs

Problems with Current Mass Based Metrics

 Degree of Cycle Closure is not accounted

Materials' importance is ignored

System approach

Evaluation Method

Evaluation Method

LEUVEN

Stable Market is already in place for secondary materials

Reduced price of downcycled materials is in relation to the 'quality' of materials

Reduced quality multiplied with the impact for producing the material equals the impact of producing the material it will replace

Evaluation Method: Example

Closed loop:

Recovered EI (mPT) = (3 kg) * (632 mPT/kg * 78%) – 218 mPT

Recovered EI (mPT) = 1261

Downcycling:

Recovered EI (mPT) = (3 kg) * (632 mPT/kg * 13%) – 218 mPT

Recovered EI (mPT) = 29

Based on the analysis of 105 EoL LCD TVs EI Data Sources: Ecoinvent 2.2; Ecolizer 2.0 Virgin Material Value used LCD panel not included

Average of representative PCBs: SSB, TICON, Power Supply and other big PCBs Only valuable metals included

Scenarios

Scenarios

Scenario Analysis: Mass vs. El

R-Mass: Recovered Mass R-EI: Recovered Environmental Impact

Scenario Analysis: Mass vs. El

R-Mass: Recovered Mass R-EI: Recovered Environmental Impact

Scenario Analysis: Mass vs. El

R-Mass: Recovered Mass R-EI: Recovered Environmental Impact

Scenario Analysis: Value recovery

Mass based metrics are not a good indicator for environmental or economic performance.

Current shredding based processes impede high recovery of precious metals and plastics resulting in high loss of EI and value.

The proposed method is a <u>practical</u> approach for assessing the recovered EI of recycled materials for operational optimization.

PRIME

Project summary:

http://www.mipvlaanderen.be/nl/webpage/97/prime.aspx

3 minute movie on youtube:

http://www.youtube.com/watch?v=COyVkyhT2Bw&sns=em

Feasibility of Disassembly

Economic Feasibility According to Product Type

WEEE Examples as per the European Community directive 2002/96/EC © JRD

...

44

product flows

money flows links (0/1)

Option 5

. . .

Product

Recovery

(Np)

End-of-life WEEE product flows are modelled in order to analyse the system sensitivity for cost parameter variations.

© JRD

Material

recycling

Landfill

...

- Transport cost

+ Value of the parts

C4

C5

- Testing Cost (Re)

- Repair Cost (Re) - Shredder Cost (Ma)

- Cleaning Cost (Re)

- Dumping Cost (La)

+ Value of the product

- Transport cost

Feasibility of Disassembly

Feasibility determining factors: Required productivity improvements for WEEE processing

"Can Large-Scale Disassembly Be Profitable? A Linear Programming Approach to Quantifying theTurning Point to Make Disassembly Economically Viable", Willems B., Dewulf W., Duflou J., International Journal of Production Research, Volume 44, no 6 (2006)

Feasibility of Disassembly

Assembly: Entropy reduction

Disassembly: Entropy increase

Building: 22.6 min.

Controlled disassembly: 3.5 min.

Feasibility of Disassembly

Active Disassembly Concept

One-to-one disassembly One-to-many disassembly

- Disassembly as inverse assembly
- Connections reversed individually
- Limited automation potential
- Products treated sequentially

- Single action causing reversal of multiple connections
- Uniform trigger signal
- High automation potential
- Multiple products can be treated in parallel

EXTRACT:

Externally Triggered Active Disassembly

Feasibility of Disassembly

Active Disassembly Concept: EXTRACT

One-to-many fastening techniques

Disassembly embedded design

- Product specific
- Physical contact
- Linking of fasteners

Active disassembly

- Generic
- NO physical contact
- External trigger for *n* fasteners
- ~ self-disassembly

Feasibility of Disassembly

Feasibility of Disassembly

Feasibility of Disassembly

Feasibility of Disassembly

Feasibility of Disassembly

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Trigger principle	Disassembly embedded design	Active disassembly
Mechanical	Mechanical force (Braunschweig, 2003) Pneumatic force (Braunschweig 2003)	Pneumo-elements (Neubert, 2000) Pneumatic force (Willems 2007)
Thermal	Heat-activated joining structures (Nishiwaki 2000) (Li 2003)	SMA (Chiodo 1997,1999, 2002) (Sakai 2003) Freezing elements (Neubert 2000)
Chemical		Alloy (Suga 2000) Soluble nuts (Neubert 2000)
Electro- magnetic	Electro-magnetic field (Braunschweig 2003) (Klett 2003)	
Electrical	Heating wire (Masui 1999) (Klett 2003) Piezo-electrical effect (Braunschweig 2003) Self-activating SMA (Jones 2004)	

Thermal trigger principle

(Nishiwaki, 2000) (Li, 2003)

Classification of innovative fasteners for self-disassembling products

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Debond-on-Command tape

Easy disassembly of parts for repair or recycling

© JRD

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Trigger principle	Disassembly embedded design	Active disassembly
Mechanical	Mechanical force (Braunschweig, 2003) Pneumatic force (Braunschweig 2003)	Pneumo-elements (Neubert, 2000) Pneumatic force (Willems 2007)
Thermal	Heat-activated joining structures (Nishiwaki 2000) (Li 2003)	SMA (Chiodo 1997,1999, 2002) (Sakai 2003) Freezing elements (Neubert 2000)
Chemical		Hydrogen storage alloy (Suga 2000) Soluble nuts (Neubert 2000)
Electro- magnetic	Electro-magnetic field (Braunschweig 2003) (Klett 2003)	
Electrical	Heating wire (Masui 1999) (Klett 2003) Piezo-electrical effect (Braunschweig 2003) Self-activating SMA	
	Trigger principle Mechanical Thermal Chemical Electro- magnetic Electrical	Trigger principleDisassembly embedded designMechanicalMechanical force (Braunschweig, 2003) Pneumatic force (Braunschweig 2003)ThermalHeat-activated joining structures (Nishiwaki 2000) (Li 2003)ChemicalElectro- magneticElectro- magneticElectro-magnetic field (Braunschweig 2003)ElectricalHeating wire (Masui 1999) (Klett 2003)ElectricalHeating wire (Masui 1999) (Klett 2003)Self-activating SMASMA

Chemical trigger principle

Classification of innovative fasteners for self-disassembling products

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Trigger principle	Disassembly embedded design	Active disassembly
Mechanical	Mechanical force (Braunschweig, 2003) Pneumatic force (Braunschweig 2003)	Pneumo-elements (Neubert, 2000) Pneumatic force (Willems 2007)
Thermal	Heat-activated joining structures (Nishiwaki 2000) (Li 2003)	SMA (Chiodo 1997,1999, 2002) (Sakai 2003) Freezing elements (Neubert 2000)
Chemical		Hydrogen storage alloy (Suga 2000) Soluble nuts (Neubert 2000)
Electro- magnetic	Electro-magnetic field (Braunschweig 2003) (Klett 2003)	
Electrical	Heating wire (Masui 1999) (Klett 2003) Piezo-electrical effect (Braunschweig 2003) Self-activating SMA (Jones 2004)	

Electrical trigger principle

(Klett, 2003)

Classification of innovative fasteners for self-disassembling products

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Trigger principle	Disassembly embedded design	Active disassembly
Mechanical	Mechanical force (Braunschweig, 2003) Pneumatic force (Braunschweig 2003)	Pneumo-elements (Neubert, 2000) Pneumatic force (Willems 2007)
Inermai	Heat-activated joining structures (Nishiwaki 2000) (Li 2003)	SMA (Chiodo 1997,1999, 2002) (Sakai 2003) Freezing elements (Neubert 2000)
Chemical		Hydrogen storage alloy (Suga 2000) Soluble nuts (Neubert 2000)
Electro- magnetic	Electro-magnetic field (Braunschweig 2003) (Klett 2003)	
Electrical	Heating wire (Masui 1999) (Klett 2003) Piezo-electrical effect (Braunschweig 2003) Self-activating SMA (Jones 2004)	

Mechanical trigger principle

Active disassembly with pressure triggered generic fasteners

Feasibility of Disassembly

Pressure Sensitive Fasteners for Active Disassembly

Jef Peeters Wannes Van den Bossche Prof. Joost Duflou Prof. Wim Dewulf

Tom Devoldere Eric Moons

René Slinckx

Extract Direct Project Active Disassembly Research 2011 - 2014

Feasibility of Disassembly

Available technologies determining the productivity of disassembly :

Disassembly oriented fasteners

Coverage of different Externally triggered self-disassembling product types functional requirements and generic fasteners: an ongoing development product architectures Ful Coverage 1 Peeters Willems Chiodo (Nèubert Klett Braunschweig Development Simple Jones Phase Concept Masui Concept Conceptual Functional First ldea Mass generation prototypes prototype industrial production 64 © JRD prototype

